Introduction:

Artificial Intelligence (Al) is the presence of human intelligence in machines
providing them with the ability to think like humans and mimic human actions. Al is
continuously evolving and has made rapid strides in mimicking human activities.
They are classified as weak or strong based on whether they focus on a particular
job or complex job. The Al used in the medical imaging is strong Al with algorithms
designed to excel to recognize complex patterns in diagnostic images. It can provide
automated quantitative assessment of the images. Healthcare is becoming
increasingly data intensive. Integration of Al into clinical workflow will help in faster
and more accurate reproducible image assessment. Desire for improved efficiency
in clinical care has been the primary driver behind the rapid advancement of Al. This
poster is intended to raise the awareness on the current use of Al in medical
imaging and its pros and cons.

Algorithm

* is a set of well-defined instructions that function as a pathway to achieve result
from an established initial situation.

« analogous to human brain and nerve signals.

« with a proper algorithm Al can perform quick analysis of huge amount of data,
pattern recognition, efficient assessment, and pathology detection without
subjective bias

Types of Al

The emergence of artificial superintelligence will change humanity, but it's not happening soon.
Here are the types of Al leading up that new reality.

Reactive Al Limited memory Theory of mind

o Good for simple o Can handle complex o Able to understand human © Human-level intelligence
classification and pattern classification tasks motives and reasoning. that can bypass our
recognition tasks Can deliver personal intelligence, too

experience to everyone

based on their motives

o Capable of complex and needs.
tasks such as self-driving

o Able to use historical

o Great for scenarios where data to make predictions
all parameters are known;
can beat humans because
it can make calculations
much faster

o Able to learn with fewer
examples because it
understands motive
and intent

cars, but still vulnerable
to outliers or adversarial
© Incapable of dealing axamples
with scenarios including
imperfect information
or requiring historical
understanding

o This is the current state of
Al, and some say we have
hit awall

o Considered the next
milestone for Al's evolution
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Use of Al in medical imaging
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Application in identifying cardiovascular anomalies

Decreased image reconstruction time for cardiac MRI

Helped the cardiologists with automated pathology classification in

electrocardiography

Automated image analysis in Invasive Coronary Angioplasty (ICA) for frame
selection, segmentation, lesion assessment, and functional assessment of

coronary flow (Molenaar et al., 2022).

Able to identify relevant structures crucial for detecting, localizing, and classifying

coronary lesions

Reduced incidences of subjective interpretation and difficulty in assessing true 3-
D stenosis grade caused by three-dimensional (3-D) structures captured in two-
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dimensional (2-D) (Molenaar et al., 2022) leading to faster diagnosis and e - A et
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algorithm can assist with patient safety enable accurate and rapid CMR image

in co ronary ang IOg raphy with 98% recog nition accu racy a nd 85% SenSitiVity and improve diagnostic accuracy during 81gariim can provide 2 nexpensive, segmentation and analysis of myocardial

(Molenaar et al., 2022).

Real-time coronary stenoses detection with high sensitivity for accurate and

faster diagnosis and treatment planning.

non-invasive approach for long-term
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coronary angiography

Application on oncology

* Precision in skin lesions annotations (including melanoma) comparable to
dermatologists (Shimizu & Nakayama, 2020).

« Rapid and accurate interpretation of mammographs for breast cancer screening

« Able to detect 13 different types of cancers including breast, lung, and colorectal
cancer (Shimizu & Nakayama, 2020).

« Able to map out potential cancer cells

« Rapid automated genomic sequencing to detect any mutation leading to
suppression of Tumor Necrosis Factor (TNF) or formation of oncogene, and
efficient classification of mutation with clinical phenotypes (Shimizu & Nakayama,
2020)

 Enables rapid personalized treatment initiation.

Application in neurology

 Automated detection of neurodegeneration through image analysis

 Automated measurement biomarkers of Alzheimer’s disease and rate of brain
atrophy.

» Al-based CT scans assessments for automated lesion segmentation of
hemorrhagic infarcts, or automated detection and quantification of hemorrhagic
expansion (Nagamine et al., 2020).

« Early detection of warning signs of ischemia on CT images

 Used in traumatic brain injury (TBI) to lessen the impact of secondary brain injury
by controlling intracranial pressure

* Could predict 30-day mortality for TBI patients with 80% accuracy based on
variables such as intracranial pressure, arterial pressure, and motor and eye
movement components of Glasgow Coma Scale (Raj et al., 2019).
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Al IN TRAUMATIC BRAIN INJURY

Accesses the appropriateness of imaging orders to predict the patient’s risk at

fracture

Reduction in MRI acquisition time by separating targeted image content from the

aliasing artifacts

Promising results in terms of image quality and diagnostic accuracy when
comparing Al accelerated knee MRI to conventional MRI up to four times (Wang

et al., 2016)

Reduces patient doses in CT scans while maintaining diagnostic efficiency and
accuracy; consensus of 90% of radiologists (Cross et al., 2017)

Automated pattern detection and image interpretation to diagnose fractures,
bone age and strength, and various pathologies (Gyftopoulos et al., 2019)
Detection and localization of thoracic and lumbar spine fractures with 95.7%

accuracy with the use of Al (Burns et al., 2017).
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Application in musculoskeletal injuries (MSK injuries)
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Deep learning model trained 1478 MRI studies can segment
musculoskeletal tissues for reliable and fast quantitative analysis
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Pros Cons
* Increased diagnosis efficiency * Privacy and security concerns
 Reduce imaging time « Lack of interoperability and regulation
* No subjective bias » Lack of sample size to reduce skewed

results

Automation
« High initial implementation cost

Reduction in patient dose

Faster and customized treatment

Al Improves Entire Radiology Workflow
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